Roundtest (Roundform Measuring Instruments)

- JIS B 7451-1997: Roundness measuring instruments
- JIS B 0621-1984: Definition and notation of geometric deviations

Roundness
Any circumferential line must be contained within the tolerance zone formed between two coplanar circles with a difference in radii of \(t \).

Straightness
Any line on the surface must lie within the tolerance zone formed between two parallel straight lines a distance \(t \) apart and in the direction specified.

Flatness
The surface must be contained within the tolerance zone formed between two parallel planes a distance \(t \) apart.

Cylindricity
The surface must be contained within the tolerance zone formed between two coaxial cylinders with a difference in radii of \(t \).

Concentricity
The center point must be contained within the tolerance zone formed by a circle of diameter \(t \) concentric with the datum.

Coaxiality
The axis must be contained within the tolerance zone formed by a cylinder of diameter \(t \) concentric with the datum.

Perpendicularity
The line or surface must be contained within the tolerance zone formed between two planes a distance \(t \) apart and perpendicular to the datum.

Circular Runout
The line must be contained within the tolerance zone formed between two coplanar and/or concentric circles a distance \(t \) apart concentric with or perpendicular to the datum.

Total Runout
The surface must be contained within the tolerance zone formed between two coaxial cylinders with a difference in radii of \(t \), or planes a distance \(t \) apart, concentric with or perpendicular to the datum.

Adjustment prior to Measurement

Centering
A displacement offset (eccentricity) between the Roundtest’s rotary table axis and that of the workpiece results in distortion of the measured form (limaçon error) and consequently produces an error in the calculated roundness value. The larger the eccentricity, the larger is the error in calculated roundness. Therefore the workpiece should be centered (axes made coincident) before measurement. Some roundness testers support accurate measurement with a limaçon error correction function. The effectiveness of this function can be seen in the graph below.

Leveling
Any inclination of the axis of a workpiece with respect to the rotational axis of the measuring instrument will cause an elliptic error. Leveling must be performed so that these axes are sufficiently parallel.

Figure: Eccentricity versus roundness error

Figure: Inclination versus elliptic error
Roundness Testing

Effect of Filter Settings on the Measured Profile

Roundness values as measured are greatly affected by variation of filter cutoff value. It is necessary to set the filter appropriately for the evaluation required.

Evaluating the Measured Profile Roundness

Roundness testers use the measurement data to generate reference circles whose dimensions define the roundness value. There are four methods of generating these circles, as shown below, and each method has individual characteristics as the method that best matches the function of the workpiece should be chosen.

- **Least Square Circle (LSC) Method**
- **Minimum Zone Circles (MZC) Method**
- **Minimum Circumscribed Circle (MCC) Method**
- **Maximum inscribed Circle (MIC) Method**

![Diagram showing various circles for roundness evaluation]

Traceability System for Roundform Measuring Instruments

(Traceability to PTB*)

![Diagram showing traceability system]

Stylus Tip

Ball type

Cylinder type

Axle type

Egg type

![Diagram showing stylus tip types]

Undulations Per Revolution (UPR) data in the roundness graphs

A 1 UPR condition indicates eccentricity of the workpiece relative to the rotational axis of the measuring instrument. The amplitude of undulation components depends on the leveling adjustment.

A 2 UPR condition may indicate: (1) insufficient leveling adjustment of the holding chuck on the measuring instrument; (2) circular runout due to incorrect mounting of the workpiece on the machine tool that created its shape; (3) the form of the workpiece is elliptical by design as in, for example, an IC-engine piston.

A 3 to 5 UPR condition may indicate: (1) Deformation due to over-tightening of the holding chuck on the measuring instrument; (2) Relaxation deformation due to stress release after unloading from the holding chuck on the machine tool that created its shape.

A 5 to 15 UPR condition often indicates unbalance factors in the machining method or process used to produce the workpiece.

A 15 (or more) UPR condition is usually caused by tool chatter, machine vibration, coolant delivery effects, material non-homogeneity, etc., and is generally more important to the function than to the fit of a workpiece.

Reference:

*PTB: Physikalisch-Technische Bundesanstalt (Germany)