

Probes for Coordinate Measuring Machines

Catalog No. E16005(5)

A wide range of probes supports various kinds of your measurement applications

MPP-310Q Ultra High-Accuracy Scanning

Fast scanning

The **MPP-310Q** is a multi-functional probe designed for CNC coordinate measuring machines. It can not only perform a continuous path contact-type scanning measurement [a measurement method that implements a collection of a large amount of coordinate data while traveling along a continuous path in contact with the workpiece] at V2 \leq 0.3 µm (reference value when the LEGEX series is installed), but also high-accuracy point measurement of \leq 0.1 µm (on the LEGEX CMM series), and data collection from a centering point measurement.

Omni-directional scanning

The **MPP-310Q** has internal high-accuracy scales with a minimum resolution of 0.01 μ m for each direction (X, Y, and Z axes), which makes it possible to read the stylus displacement in any direction.

The air bearing employed in the sliding section of each axis helps enable this probe with minimum directionality.

Low measuring force

The ordinary touch-trigger probe, even if it needs only a small force to generate a trigger signal the moment the stylus actually comes into contact with the workpiece, may be apply several tens to several hundred grams of force in the over-travel period that immediately follows contact. In addition, some scanning probes from other manufacturers employ such a structure that the motor drive mechanism forcibly determines the probing position in order to permit the use of a longer stylus, necessitating the probe to actually produce a greater measuring force.

In contrast, the **MPP-310Q** can reduce its measuring force to a minimum of 0.03 N so that it can even measure elastic workpieces such as resins, etc., without damaging them at all.

Fast scanning

For a scanning measurement, either of the following scanning methods can be selected: one in which scanning progresses while automatically following an unknown geometry (unknown geometry scanning), or one in which scanning progresses based on the locus of the probe tip given beforehand (known geometry scanning). With known geometry scanning it is possible to perform fast scanning at 120 mm/s.

Convertionally, it is normal to evaluate geometries such as a line or a circle through point measurement. However, for evaluating the flatness or roundness of an extra precision-machined workpiece, it is better to improve the reliability of the measurement result by evaluating the object at more measurement points.

Naturally, it takes an extended amount of time for a touch-trigger probe to measure such an object point by point if very many points are involved. In contrast, the **MPP-310Q** can, for example, complete a measurement in just a few seconds even if it is required to measure an inside diameter of 100 mm using 1000 measurement points. In addition, measurement can be pursued effectively while changing the scanning speed, depending on the measurement accuracy required.

Optional units

A wide variety of optional units, including rotary table for synchronized scanning and the automatic stylus change system, is available.

MPP-310Q Specifications			
MPP-3100	Measuring range	±1 mm	
	Resolution	0.01 µm	
	Scanning error MPETHP (JISB 7440-4: 2003)	1.1 µm (60 sec) (LEGEX500/700/900: when the ø4×18 mm stylus is used.)	
	Single stylus shape error PFTU.MPE (JIS B 7440-5: 2013)	0.4 µm (LEGEX500/700/900: when the ø4×18 mm stylus is used.)	
	Spring rate	0.2 N/mm	
	Max. stylus length	200 mm for both vertical and horizontal ^{*1}	
	Max. stylus mass	75 g *1	
	Stylus mount	M4 thread	
	Max. tracing speed	120 mm/s [for known geometry scanning]	
	Air flow rate	30 NL/min	
	Probe head	N/A	
	Applicable models	CNC CMM*2	
Automatic stylus change system (optional)	No. of mountable stylus modules	 - 4 standard units [Port 1 is dedicated for the standard stylus (for calibration purpose)] - Expandable to max. 10 ports. Note, all styli should be arranged on the same axis. 	

*1 Increase in stylus length or stylus mass may reduce accuracy.

*2 Note that some probes are subjected to the limitation of mounting or unable to mount.

Set configuration

Optional units Automatic Stylus Changer

MPP-310Q Ultra High-Accuracy Scanning

An example scanning measurement of a ring gage with the LEGEX series and MPP-310Q

	Qty			F	Remarks
	1	Includi	ng one stylus mount	asser	mbly
J	1	Silicon	oil (2000CS)		
1	1				
	1				
	1	Woode	en box for storing M I	PP-3	10Q
	1				
	5				
	2	M4-M4	4 ceramics Extension	L=30) mm
	1	M4-M4	1 ceramics Extension	L=50) mm
	1	M4-M4	1 ceramics Extension	L=10	JU mm
	1				
	1	F		4 1 1	
	2	For atta	aching/detaching M4	i styli	2L
	1	English			
	1				
	1	For our	rease energification		
	1	FOI OVE	rseas specification		
		Deskio	punit		
				₽	
	nil				
J	nit _	Ref. No.	Description	Otv	Remarks
		1	Auto-stylus change rack	1	Supplied with 4 ports for replacement
0	matic	2	Stylus mount assembly	3	Used for installing a rack on the CMM bas
U	IS	3	Auxiliary plate	1	osea for instailing a fact of the CMM bas
n	ne	4	MS4-4R13 5-S	3	

SP80 High-accuracy Scanning Probe with Long Stylus Carrying Capacity

High accuracy achieved even with very long styli

The **SP80** scanning probe is designed to achieve high measurement accuracy even when using styli up to 500 mm (in both the horizontal and vertical directions) in length. It is a multi-function probe for CNC coordinate measuring machines that undertakes not only scanning measurement (a measurement method that collects a large amount of coordinate data while traveling along a path in contact with the workpiece) but also high-accuracy point measurement as well as data collection from a centering point measurement.

Fast scanning

For scanning measurement, either of the following scanning methods can be selected: one in which scanning progresses while automatically following an unknown geometry (unknown geometry scanning), or one in which scanning progresses based on the locus of the probe tip given beforehand (known geometry scanning). With known geometry scanning it is possible to perform fast scanning at 120 mm/s. Conventionally, it is normal to evaluate geometries such as a line or circle through point measurement. However, for evaluating the flatness or roundness of an extra precision-machined workpiece, it is better to improve the reliability of the measurement result by evaluating the object at more measurement points. Naturally, it takes an extended amount of time for a touch-trigger probe to measure such an object point by point. In contrast, the **SP80** can, for example, complete a measurement in just a few seconds, even if it is required to measure an inside diameter of 100 mm using 1000 measurement points. In addition, any measurement can be pursued effectively while changing the scanning speed, depending on the measurement

accuracy required.

Optional units

A wide variety of optional units, including rotary table MRT320 for synchronized scanning and the automatic stylus change system, is available.

SP80 Specifications			
SP80	Measuring range	±2.5 mm	
	Scanning error	MPETHP≤2.0 µm (CRYSTA-Apex V700/900: when the ø4x50 mm stylus is used.)	
	Spring rate	1.8 N/mm	
	Max. stylus length	500 mm *1	
	Max. stylus mass	500 g *1	
	Stylus mount	M5 thread	
	Max. scanning speed	120 mm/s [for known geometry scanning]	
	Probe head	N/A	
	Applicable models	CNC coordinate measuring machines *2	

*1 Increase in stylus length or stylus mass may reduce accuracy.

*2 Note that some probes are subjected to the limitation of mounting or unable to mount.

Set configuration

SP80 main unit		
Description	Mass (kg)	Remarks
SP80 Probe kit #1	2.6	One SP80 main unit, SH80, KM80, and ø8X
Parts for SP80		
	Des	cription
SP80 adapter		
SP80 Probe cable		
SP80 EXT cable		
IU 80		
SP80 Power Supply BOX		
OPT200S-MPP2		
OPT200 attachment		
Control ROM (MAIN)		
Control ROM (OPT)		
Note: Some items cannot be o	rdered separate	ly.

Optional units Automatic Stylus Changer

SP80 High-accuracy Scanning Probe Can Use Very Long Styli

ylus change s	et 1 (600 mm-ra	il specifications)
---------------	-----------------	--------------------

Description	Unit
t #2	1
	1
	2
ate (auxiliary plate)	1
ttachment screw	1

SP80 stylus change set 2 (1000 mm-rail specifications)

Description	Unit
: #3	1
	3
	4
ate (auxiliary plate)	1
ttachment screw	1

SP25M Compact High-accuracy Scanning Probe

Compact high-accuracy scanning probes

The **SP25M** is a compact high-accuracy scanning probe with an outside diameter of ø25 mm. This is a multi-functional probe designed for CNC coordinate measuring machines that can not only perform a continuous path contact-type scanning measurement [a measurement method that implements collection of a large amount of coordinate data while traveling along a continuous path in contact with the workpiece], but also high-accuracy point measurement and data collection from a centering point measurement.

Fast scanning

For a scanning measurement either of the following scanning methods can be selected: one in which the scanning progresses while automatically following an unknown geometry (unknown geometry scanning), and one in which scanning progresses based on the locus of the probe tip given beforehand (known geometry scanning). With known geometry scanning it is possible to perform fast scanning at a maximum of 120 mm/s. Conventionally, it is normal to evaluate geometries such as a line or a circle through point measurement. However, for evaluating the flatness or roundness of an extra precision-machined workpiece, it is better to improve the reliability of a measurement result by evaluating the object at more measurement points. Naturally, it takes an extended amount of time for a touch-trigger probe to measure such an object point by point if very many points are involved. In contrast, the SP25M can, for example, complete a measurement in just a few seconds even if it is required to measure an inside diameter of 100 mm using 1000 measurement points. In addition, it can pursue any measurement effectively while changing the scanning speed, depending on the measurement accuracy required.

Enhancing the setup and measurement efficiency through automatic change of probe orientations

Since the SP25M can be mounted on a probe head such as the PH10M/PH10MQ that automatically changes the probe orientation, it can greatly reduce the preparation time for measurement and for actual measurement in comparison to a conventional-type scanning probe whose position is fixed downward. In addition, the use of other probes, as advantaged by the probe change system, makes it possible to realize full automation in measuring various forms of machined parts.

An automatic stylus change system is available.

SP25M Specifications

SP25M	Measuring range	±0.5 mm
	Scanning error	MPETHP ≤2.3 µm (CRYSTA-Apex V700/900: when the ø4x50 mm stylus is used.)
	Spring rate	0.2~0.6 N/mm
	Amount of over travel	XY: ±2 mm Z: +1.7 mm/-1.2 mm
	Max. stylus length	200 mm (When SM25-3 or SH25-3 is used.)*
	Stylus mount	M3 threaded
	Max. scanning speed	120 mm/s [for known geometry scanning]
	Probe head	Essential: PH10M/PH10MQ
	Applicable models	CNC coordinate measuring machines

* Increase in stylus length or stylus mass may deteriorate the accuracy.

Description	Remarks
SP25M full combination kit	A complete set of SP25M, SM25-1/2/3, SH25-1/2/3, and TM25-20
SP25M probe kit #1	A complete set of SP25M, SM25-1, and SH25-1
SP25M probe kit #2	A complete set of SP25M, SM25-2, and SH25-2
SP25M probe kit #3	A complete set of SP25M, SM25-3, and SH25-3
SP25M probe kit #4	A complete set of SP25M, SM25-4, and SH25-4
SP25M probe kit #5	A complete set of SP25M, SM25-5, and SH25-5
SM25M scanning module kit #1	A complete set of SM25-1 and SH25-1
SM25M scanning module kit #2	A complete set of SM25-2 and SH25-2
SM25M scanning module kit #3	A complete set of SM25-3 and SH25-3
SM25M scanning module kit #4	A complete set of SM25-4 and SH25-4
SM25M scanning module kit #5	A complete set of SM25-5 and SH25-5
Stylus holder SH25-1	
Stylus holder SH25-2	
Stylus holder SH25-3	
Stylus holder SH25-4	
Stylus holder SH25-5	
TM25-20 TP20 adapter kit	A set of TP20 standard force module and TM25-20
TM25-20 TP20 adapter	

Optional units Auto module changer/Automatic Stylus Changer

SP25M Compact High-accuracy Scanning Probe

SP600Q High-accuracy Scanning Probe

Compact high-accuracy scanning probes

SP600Q is a high-accuracy scanning probe which can be mounted on the CRSTA-Apex V500 series. It performs not only scanning measurement (measurement method that collects a large amount of coordinate data while traveling along a path in contact with the workpiece), but also high-accuracy point measurement. Direct-mount of this probe on the Z spindle of CRYSTA-Apex V500 allows more effective usage of measurement space.

Fast scanning

For a scanning measurement either of the following scanning methods can be selected: one in which the scanning progresses while automatically following an unknown geometry (unknown geometry scanning), and one in which scanning progresses based on the locus of the probe tip given beforehand (known geometry scanning). With known geometry scanning it is possible to perform fast scanning at a maximum of 120 mm/s. Conventionally, it is normal to evaluate geometries such as a line or a circle through point measurement. However, for evaluating the flatness or roundness of an extra precision-machined workpiece, it is better to improve the reliability of a measurement result by evaluating the object at more measurement points. Naturally, it takes an extended amount of time for a touch-trigger probe to measure such an object point by point if very many points are involved. In contrast, the SP600Q can, for example, complete a measurement in just a few seconds even if it is required to measure an inside diameter of 100 mm using 1000 measurement points. In addition, it can pursue any measurement effectively while changing the scanning speed, depending on the measurement accuracy required.

Optional units

An automatic stylus change system is available.

SPOUQ Specifications			
SP600Q	Measuring range	±1 mm (X, Y, Z)	
•	Min. reference displacement	0.15 mm	
	Spring rate	1.2 N/mm	
	Measuring force	0.17~1.18 N (18~120 gf) Varies depending on the probe displacement.	
	Max. stylus mass	Max. 20 g *1	
	Max. stylus length	Max. 200 mm *1	
	Stylus mount	M4 thread	
	Probe head	Unnecessary	
	Applicable models	CNC coordinate measuring machine *2	

*1 Increase in stylus length or stylus mass may reduce the accuracy.

CDC000 Creation

*2 Note that some probes are subjected to the limitation of mounting or unable to mount.

Set (No. 06ADV933) configuration

Description	Part No.	Qty
SP600Q Probe kit	06ADV597	1
Spacer A for SP600Q	06ADU577	1
Spacer B for SP600Q	06ADU578	1
SP600Q Head cable	06ADU687	1
SP600 IF cable	06AAS624A	1
ø4L50 stylus (MS4-4R33C)	06ABQ149	1
L50 Extension (MS4-EXT50C)	06ABN849	1
Stylus center (MS4-stylus center)	06ABN857	1
Knuckle joint (MS4-stylus knuckle)	06AAD460	1
SP600Q User's Manual	99MCA562A	1

SP600Q Compact High-accuracy Scanning Probe

SurfaceMeasure Non-contact Laser Probe

Measurement of color sample plate Measurement of shiny workpiece

High-speed scanning

SurfaceMeasure is a probe that captures coordinates data from a workpiece by shining a laser on the surface. This method allows ultra-fast data acquisition of 300,000 points/sec*. * When SurfaceMeasure 1110 is used

Advantage of non-contact measurement

Non-contact measurement makes it possible to measure elastic bodies such as resin and thin-walled parts which are not suitable for contact measurement.

Powder-sprayless measurement

By automatically adjusting the laser intensity and camera sensitivity according to the environment and the workpiece material, the SurfaceMeasure has achieved powder-sprayless measurement, providing a simpler and more comfortable laser-scanning environment.

Application examples

Obtained point-cloud data can be used for various purposes with optional software, such as editing, surface generation, comparing with CAD data, creating CAD data, etc.

Item/Model		SurfaceMeasure 403	SurfaceMeasure 1110	SurfaceMeasure 201FS
Laser irradiation m	iethod	Beam expansion		Flying spot
Max. scan wid	th	40 mm	110 mm	23 mm
Max. scan dep	th	30 mm	100 mm	15 mm
Working distar	nce	66 mm	156.5 mm	57.5 mm
Scanning error	. *1	8 µm	9 µm	-
Probing dispersion value*2 (95%) P form.sph.D95%:Tr:ODS		- *3	36 µm	8.0 µm
Max. Acquisition rate		60,000 points/sec	300,000 points/sec	25,000 points/sec.
Mass		430 g	440 g	500 g
EN/IEC		Class2 [IEC 60825-1: 2014/ EN 60825-1: 2014+A11:2021]		
Laser Class	JIS	Class2 [JIS C 6802: 2014]		
	Laser Type			
Line Laser	Wave length	660 nm		670 nm
Line Laser	Output	4 mW	2.5 mW	1 mW

*1 According to Mitutoyo's test procedure. (1 σ /sphere measurement, probe alone)

*2 According to ISO10360-8:2013 test procedure. (probe alone)

*3 Please contact your local Mitutoyo office.

SurfaceMeasure

processing point-cloud data is not required.

Since MSURF-S can be started from MCOSMOS, automatic measurements that merge "contact" and "non-contact" measurements can be executed.

Inspection (MSURF-I)

MSURF-S/MSURF-I

Scanning (MSURF-S)

increase productivity.

checking the camera preview.

element shape) for line laser probes from 3D CAD data.

• Planar shape comparison

Point-cloud data or mesh data can be compared with CAD data, and the planar shape errors displayed on a color map.

Color map of errors

• Comparison of cross-sectional shapes

Point-cloud data / mesh data and CAD data can be cut at the specified position to compare cross-sectional shapes or compute angles, distances, radii, etc.

Cross-sectional evaluation (dimension computation)

SurfaceMeasure Non-contact Line-Laser Probe

• MSURF PLANNER (optional) MSURF PLANNER software automatically generates measurement macros (surface shape, The optimized measurement path (movement path, number of probe head rotations, etc.) helps

Automatic generation of measurement macros by MSURF PI ANNER

* If the work coordinate system created in MCOSMOS is used, positioning by the software programs designed for

* Note: If ACR3 is not used, the probe must be manually changed.

Evaluation of steps and gaps

• Feature-by-feature comparison

Various features can be detected from point-cloud data or mesh data and compare them to the design data.

QVP Quick Vision Probe

Provides image measuring capability for coordinate measuring machines

The QVP probe performs form measurement by image processing micro geometry that cannot be measured by a contact type probe, or elastic bodies that are easily deformed by slight measuring forces. Although the method of microscopic measurement with a centering microscope mounted on the coordinate measuring machine has been used since coordinate measuring machines came into use in the industry, they have an inherent disadvantage in that the operation of identifying positions is dependent on the operator's eye, resulting in possible measurement errors. Even with a CNC coordinate measuring machine manual measurement must be performed sometimes, such as with an installed centering microscope. The QVP probe is a vision probe dedicated for coordinate measuring machines and was developed based on Mitutoyo's state-of-the-art technology, in order to enable full automation of image measurement with a CNC coordinate measuring machine.

Automatic detection of workpiece edge

The QVP-captured image will have various automatic edge detections performed by the dedicated software, VISIONPAK, and then various calculation processes (calculation of dimensions and geometrical deviations) will be performed by the general-purpose measurement program, Geopak.

Standard provision of white LED illumination

Since the **QVP** is equipped with the standard co-axial light running through the lens system as well as white-light LED ring illumination, which is bright and has a long service life, no auxiliary illumination is required. The light volume can be set to between 0 and 100% in 1% increments.

Use with an Automatic Probe Changer

The QVP can also be mounted on an automatic probe changer, allowing full-automatic measurement with both contact and non-contact probes.

QVP Specifi	ications					
OVP main unit	CCD size			1/3 in	1/3 inch (B/W)	
4	Optical tube magnification	1 I		0.1	0.375×	
	Illuminating	Co-axial	White light LED source (built-in):		rce (built-in): Power dissipation 5 W or less	
	function	Ring		White light LED source: Po	ower dissipation 10 W or less	
	Mass			Automatic-joint type:	tic-joint type: 315 g, shank type: 390 g	
	Optical magnification		0.375×	1.125x	1.875×	3.75×
	Observation range (mm)		9.6×12.8	3.2×4.3	1.9×2.6	1×1.3
	Working distance (mm)		61	72.3	61	51
Objective	Magnification		ML1x	ML3×	ML5×	ML10×
			Optional	Standard	Optional	Optional
	Numerical Aperture (N.A.)		0.03	0.09	0.13	0.21
	Depth of focus (µm)		306	34	16.3	6.2
	Mass		80 g	55 g	60 g	95 g
OVP	Supply voltage			AC100	to 240 V	
I/F BOX	Frequency			50/	60 Hz	
	Power capacity			3	0 W	
	Mass			38	300 g	

Dimensions =72.3 OVP-A (Auto joint type) Unit: mm

Data processing unit

Dedicated data processing software VISIONPAK

VISIONPAK operates under the Microsoft Windows operating system and is a generalpurpose measurement program for coordinate measuring machines. It displays the image window when it detects a workpiece edge. After detecting an edge, it undertakes various calculations with the regular general-purpose measurement programs.

Wide variety of image processing functions

With its powerful image processing functions (tools), it can detect various forms of edges at high speed. It can measure in the height direction by means of its auto-focus function, and save the captured image as the image data (bitmap format).

Outlier removal function

In ordinary micro-form measurement it is often difficult to remove burrs and dusts from the objective workpiece, resulting in an inevitable measurement error. In contrast, VISIONPAK can recognize, for example, the obstruction as an "outlier" and bypass it during measurement.

VISIONPAK Image Processing Tool Simple tool Used for detecting a single point on the edge pointed to by the arrow. Box tool Used for multiple-point line measurement of an edge caught in the box \bigcirc Circle tool Used for multiple-point measurement of a circle for the objective circular edge. As with the box tool, it can collect data that is free from the effect of burrs and dust.

14

QVP Quick Vision Probe

CF20 Centering Microscope for Coordinate Measuring Machines

Use the coordinate measuring machine as a large microscope

The CF20 is a centering microscope that enables measurement of small holes and elastic bodies which are difficult for a touch-trigger probe to measure. With the CF20 the coordinate measuring machine can be used as a large microscope.

Optional accessories to implement various evaluations

To cope with the size and form of a workpiece to be observed and measured, lenses of various magnifications and reticles for form comparison are provided.

CCTV Monitor System for CMM with CF20 (optional)

CCD camera (optional) to be installed on model CF20. The image can be viewed on the monitor of the PC on which the dedicated software is installed. This is a great aid in relieving eye stress, especially if several hours of work must be done.

CCTV Monitor System for CMM with CF20 (optional)

CF20 monocular set dimensions

CF20 main unit

Description	Specification	Objective	Accessory
CF20 monocular set (375-201)	CF10X eyepiece, field number 22 Cross hair and concentric circle reticle	-	1. Illumination unit (375-071) 2. Spare lamp (162151) 3. Lens cap
CF20 binocular set (375-202)	CF10X eyepiece, field number 22 / Cross hair and concentric circle reticle (right) Pupil distance adjustment: 51 - 76 mm	_	5. Power cable 6. User's Manual 7. Storage box

Objectives (optional)

Code No.	Description	Numerical Aperture (N.A.)	Working distance W.D. (mm)	
375-031	CF 1X	0.03	73.7	Γ
375-032	CF 2X	0.06	92	Γ
375-033	CF 3X	0.07	77.8	Γ
375-037-1	ML 3X	0.09	77	
375-034-1	ML 5X	0.13	61	
375-039	ML 10X	0.21	51	Γ

Ref. No.	Description	Qty
1	Camera system	1
2	C-mount adapter (C)	1

CF20 Centering Microscope for Coordinate Measuring Machines

SURFTEST PROBE Surface Roughness Probe

Roughness measurement function added to CNC CMM

The **SURFTEST PROBE** is a probe that can measure surface roughness while mounted on a CNC coordinate measuring machine.

This probe uses a skid-type roughness detector that allows roughness measurement using a linear drive inside the probe. Dedicated software SURFPAK-SP is used for roughness measurement and analysis.

Batch processing from dimensional measurement to roughness measurement

This probe allows contact roughness measurement without changing a workpiece setup on a CMM. If a SURFTEST probe is mounted on the PH10M/PH10MQ, roughness measurement of tilted surfaces is enabled by changing the probe orientation. The CMM can also use other CMM probes along with a SURFTEST probe, thus allowing fully automatic measurement from dimensions to surface roughness using the Auto Probe Changer ACR3, etc.

Thanks to the knowhow accumulated in the portable surface roughness tester SJ series, several types of surface roughness detectors are available to suit various types of workpiece. A cleaning unit (option) is also available to clean the roughness detector should it become contaminated with coolant, etc. This allows improvement in reliability of roughness measurement.

SURFPAK-SP

SURFPAK-SP is a software program specific to the **SURFTEST** surface roughness probe for a CMM, and allows surface roughness analysis conforming to standards such as ISO, JIS, ANSI and VDA. Working with MCOSMOS, fully automatic dimensional measurement and surface roughness measurement are enabled.

SURFTEST PROB	E Specifications	
SURFTEST PROBE	Measuring range	AUTO, 25, 100, 360 µm
	Drive range	17.5 mm
	Measuring speed	0.25, 0.5, 0.75 mm/s
	Stylus tip radius	2 µm
	Measuring force	0.75 mN

Configuration

Description	Qty
SURFTEST PROBE Set	
SURFTEST PROBE main unit	1 1
Storage box	
SURFTEST PROBE Interface unit	1
USB CBL	1
Hardware guide	1

Optional units

Essential opti	ons		
		178-270 (0.75 mN, 60° R2 μm)	() = 0
Ukougi	nness detector	178-280 (4 mN, 90° R5 μm)	(mass):/.8
		178-601 (mm)	
(2)Kougr	iness specimen	178-602 (inch/mm)	
Option			3.5
Part No.		Name	Roug
178-270	Roughness detecto	r (0.75 mN, 60° R2 μm)	()
178-280	Roughness detecto	r (4 mN, 90° R5 μm)	(mass) :8.2
178-281	Roughness detecto	r (4 mN, 90° R10 μm)	
178-272	Small hole detector	r (0.75 mN, 60° R2 μm)	024
178-282	Small hole detector	r (4 mN, 90° R5 μm)	1
178-273	Extra small hole det	tector (0.75 mN, 60° R2 µm)	Extra
178-283	Extra small hole det	tector (4 mN, 90° R5 μm)	EAUG
178-274	Deep groove detec	tor (0.75 mN, 60° R2 μm)	() 0.0
178-284	Deep groove detec	tor (4 mN, 90° R5 μm)	(mass):8.2
178-275	Gear-tooth surface	detector (0.75 mN, 60° R2µm)	
178-285	Gear-tooth surface	detector (4 mN, 90° R5 µm)	
Optional part	ts		Gear-
Part No.		Name	
02AQJ101	Cleaning unit		
02AQJ207	Calibration stage		
02AQJ210	Support magnet (A	CR3)	

SURFTEST PROBE Surface Roughness Probe

TP7M High-Accuracy Touch-trigger Probe

High-accuracy touch-trigger probes

This is a high-accuracy touch-trigger probe with a maximum repeatability of $2\sigma \le 0.25 \,\mu$ m.

Enhancing the setup and measurement efficiency through automatic change of probe orientations

Since the **TP7M** can be mounted on a probe head, such as the **PH10M/PH10MQ** that automatically changes the probe orientation, it can greatly reduce the preparation time for measurement and for actual measurement in comparison to a conventional-type scanning probe with a position that is fixed downward. In addition, the use of other probes, as advantaged by the probe change system, makes it possible to realize full automation in measuring various forms of machined parts.

Suitable for use with long styli

The **TP7M** can mount a stylus up to 150 mm long*. In combination with the longest extension of 200 mm equipped for the **PH10M/PH10MQ**, it can reach a position at a maximum distance of 350 mm.

* This maximum length may vary with the coordinate measuring machine main unit being used and/or the material/diameter of the stylus itself.

TP7M Specifications

* Increase in stylus length or stylus mass may deteriorate the accuracy.

TP7M High-Accuracy Touch-trigger Probe

λ, ±Υ, +Δ
4x18 mm
.125 µm or less (When the standard stylus is used.)
0.25 µm or less
.02 N (When the 50 mm stylus is used.)
.15 N (When the 50 mm stylus is used.)
16°
5 mm
.49 N (When the 50 mm stylus is used.)
.94 N (When the 50 mm stylus is used.)
50 mm*
14 thread
5 g
0,000,000 times
ssential: PH10M/PH10MQ
NC coordinate measuring machines

TP7M Set

Ref. No.	Description	Qty
1	TP7M main unit	1
2	Joint key S10	1
3	M4 Stylus tool	2

TP200 Compact High-Accuracy Touch-trigger Probe

Compact high-accuracy touch-trigger probes

This touch-trigger probe has an outside diameter as small as ø13.5 mm, which greatly contributes to probing complex portions of a workpiece. With the combined use of an appropriate probe extension it can probe even deeper locations.

Enhancing the setup and measurement efficiency through the automatic change of probe orientations

Since the TP200 can be mounted on a probe head, such as the PH10M/PH10MQ that automatically changes the probe orientation, it can drastically reduce the time required to prepare for measurement and for actual measurement in comparison to a conventional-type scanning probe with a position that is fixed downward.

Automatic stylus change

If the measurement cannot be performed by merely changing the probe orientation (such as when it is impossible to measure without replacing the normal stylus with one that has a different diameter or unique form), this automatic stylus change via the stylus change system allows fully automatic measurement to be completed without being interrupted mid-course. In addition, working with other probes, as advantaged by the probe change system, makes it possible to realize full automation in measuring various forms of machined parts.

TP200 Specifications

TP200	Measuring direction		±X, ±Y, ±Z
	Repeatability (2 σ)		0.3 µm or less (with 10 mm stylus), 0.4 µm or less (with the 50 mm stylus)
	Directionality (XY: 2D)		±0.4 µm or less (with 10 mm stylus), ±0.8 µm or less (with the 50 mm stylus)
	Directionality (XYZ: 3D)		±0.65 µm or less (with 10 mm stylus), ±1 µm or less (with the 50 mm stylus)
	Required force to generate	XY	0.02 N (STANDARD/LOW FORCE), where a 50 mm stylus is used.
	trigger signal	Z	0.07 N (STANDARD/LOW FORCE), where a 50 mm stylus is used.
	Amount of over travel	XY	XY±14°
		Z	+4.5 mm (with 0.07 N), +3 mm (with 0.15 N)
		XY	0.35 N (STANDARD FORCE)
	Required force to achieve		0.1 N (LOW FORCE)
	over-travel	Z	1.5 N (STANDAKD FORCE)
			70 mm (STANDARD FORCE)*
	Maximum stylus length		30 mm (LOW FORCE)*
	Maximum stylus mass		STANDARD FORCE · 4 5 g LOW FORCE · 1 5 g
	Stylus mounting method		M2 thread
	Mass of a single unit		22 g
	Durability		10.000.000 times
	Probe head		Essential: PH10M/PH10MQ/MIH/PH1
	Applicable models		CNC coordinate measuring machines
	Noto:		Any stylus less than ø1mm should be used with the LOW FORCE module. Not suitable for use in strong
	Note.		magnetic fields.
SCR200	Stylus module replacement		Repeated positioning accuracy: 1.0 mm or less (through automatic change), when a 50 mm stylus is used.
(optional)	accuracy		*2.0 mm or less at a manual replacement: when a 50 mm stylus is used.
., ,	Number of stylus modules that		Maximum 6 units
	can be mounted		

* ø1 mm stylus should be used with the LOW FORCE module as well.

Set configuration

Uni	t	Ref. No.	Description	Qty	
	Α	1	TP200 probe	1	
	complete	2	Stylus module (standard)	1	Stand
	set of	3	Cleaning tool	1	For cle
	TP200	4	Twin-ended wrench	1	For at
	probe	5	Double-ended wrench	1	For at
Touch triagor	06AAL251	6	Stylus tool	1	For at
probe		7	MS2-4R10	1	Stand
TP200 set		8	MS2-6R10	1	Sø6×1
06 4 41 269	Stylus sot	9	MS2-4R20	1	Sø4×2
UUAAL200	for TP200	10	MS2-EXT40G	1	Exten
	00441252	11	MS2-EXT50G	1	Exten
	UGAALZSZ	12	Carbon extension	1	
		12	attachment tool	1	
		13	Wooden box	1	Stylus
		14	User's Manual	1	

Note: Some items cannot be ordered separately.

Optional accessories Stylus module automatic changer SCR200

No.	Description	Qty	Specification (use)	Mass (kg)
1	Stylus module (low measuring force)	1	For ball stylus less than ø1	0.01
2	Stylus module (standard)	3	Standard measuring force (at over-travel)	0.04
3	SCR200 kit	1	With a rack mount kit	0.93
4	PL63	1	PI200-SCR200 connection cable	0.15
* Dep	ending on the stylus to be equipped, the st	tylus and	i SCR200 may interfere.	

TP200 Compact High-Accuracy Touch-trigger Probe

Remarks
rd measuring force (at over-travel)
aning the stylus module
aching/detaching the probe (S1)
aching/detaching the probe (S9)
aching/detaching the stylus (S7)
rd stylus Sø4X10 (M2)
) (M2)
) (M2)
on 40 mm Carbon fiber
on 50 mm Carbon fiber
torage box

TP20 Compact Touch-trigger Probe

Compact touch-trigger probes

This touch-trigger probe has an outside diameter as small as ø13.2 mm, which greatly contributes to probing complex portions of a workpiece. With the combined use of an appropriate probe extension it can probe even deeper locations.

Enhancing the setup and measurement efficiency through the automatic change of probe orientations

Since the **TP20** can be mounted on a probe head such as the **PH10M/PH10MQ** that automatically changes the probe orientation, it can drastically reduce the time required to prepare for measurement and for actual measurement in comparison to a conventional-type scanning probe that has a position fixed downward (when it is mounted on the CNC coordinate measuring machine).

Automatic stylus change

If the measurement cannot be achieved by simply changing the probe orientation (such as when it is not possible to make measurements without replacing the normal stylus with one having a different diameter or unique form), automatic stylus change via the stylus change system allows fully automatic measurement to be completed without mid-course interruption. In addition, the use of other probes as advantaged by the probe change system makes it possible to realize full automation in measuring various forms of machined parts (when it is mounted on the CNC coordinate measuring machine).

TP20 Spe	cifications		
TP20	Measuring direction		±X, ±Y, +Z
	Repeatability (2σ)		0.35 µm or less (with the STANDARD FORCE 10 mm stylus)
	Directionality (XY: 2D)		±0.8 µm or less (with the STANDARD FORCE 10 mm stylus), ±2.5 µm or less (with the 50 mm stylus)
	Directionality (XYZ: 3D)		±1 µm or less (with the STANDARD FORCE 10 mm stylus), ±4 µm or less (with the 50 mm stylus)
	Required force to	XY	0.08 N (STANDARD FORCE), with 10 mm stylus 0.1 N (MEDIUM FORCE), with 25 mm stylus
	generate trigger signal	Z	0.75 N (STANDARD FORCE) 1.9 N (MEDIUM FORCE)
		XY	±14°
	Amount of over-travel	Z	+4.0 mm (STANDARD FORCE) +3.7 mm (MEDIUM FORCE)
	Required force to achieve	XY	0.2 to 0.3 N (STANDARD FORCE) 0.2 to 0.4 N (MEDIUM FORCE)
	over-travel	Z	3.5 N (STANDARD FORCE) 7 N (MEDIUM FORCE)
	Maximum stylus length		50 mm (STANDARD FORCE)* 60 mm (MEDIUM FORCE)*
	Stylus mounting method		M2 thread
	Mass of a single unit		22 g (probe body: 13 g, probe module: 9 g)
	Durability		1,000,000 times
	Probe head		Essential: PH10M/PH10MQ/MIH/PH1
	Applicable models		Manual/CNC coordinate measuring machines
	Note:		Not suitable for use in strong magnetic fields.
MCR20	Probe module replacement accuracy		Repeatability positioning accuracy: 1.0 µm or less (through automatic change), when a 10 mm stylus is used. *2.0 µm or less at a manual replacement: when a 50 mm stylus is used.
(optional)	Number of stylus modules tha	t	Maximum 6 units

* Increase in stylus length or stylus mass may deteriorate the accuracy.

Set configuration

	Ref. No.	Description	Qty	Specification (
	1	TP20 probe main unit	1	
Touch- trigger	2	Probe module [STANDARD]	1	Measuring force (sma
	3	Probe module [MEDIUM]	1	Measuring force (mee
	4	Cleaning tool	1	For cleaning stylus me
	5	Single-ended wrench	1	For attaching/detachi
TP20 set	6	Double-ended wrench	2	For attaching/detachi
06AAV547	7	Stylus tool	1	For attaching/detachi
	8	User's Manual	1	
	9	Certificate	1	
				Total mass including

Note: Some items cannot be ordered separately.

Optional accessories

Stylus module

Standard force module	
Medium force module	₩• :∎ •
EM1 (Standard force module with extension)	
EM2 (Standard force module with extension)	

Probe module automatic changing system MCR20

TP20 Compact Touch-trigger Probe

MH20i Touch-trigger Probe with Manual Probe Head

Touch-trigger probe with manual probe head

This series of touch-trigger probes has a manually operable probe head for coordinate measuring machines. The probe module has an outside diameter as small as ø13.2 mm, which greatly aids in probing complex portions of a workpiece. Other probe modules employing an extension either 50 mm long or 70 mm long are also provided.

Capable of positioning its orientation

The probe head of the **MH20i** has a structure that not only permits its position (probe orientation) to be manually changed but also provides a maximum of 168 orientations (at a positioning repeatability $\sigma \leq 1.5 \,\mu$ m). Even for measurement of a complex three-dimensional form that requires repeated changes in the probe orientation, preliminary registration of required positions can eliminate re-calibration after each positional change, thereby broadly improving the measurement efficiency.

MH20i Specifi	cations		
MH20i	Measuring direction		±X, ±Y, +Z
	Position change		Manually for A axis (vertical direction): 0 to 90° (at 15° increments), and for B axis (horizontal direction): ±180° (at 15° increments)
	Repeated positioning accura	су	<i>σ</i> ≤1.5 μm
	Repeatability (2 σ)		0.35 µm or less (with the STANDARD FORCE 10 mm stylus)
	Directionality (XY: 2D)		\pm 0.8 µm or less (with the STANDARD FORCE 10 mm stylus), \pm 2.5 µm or less (with the 50 mm stylus)
	Directionality (XYZ: 3D)		± 1 µm or less (with the STANDARD FORCE 10 mm stylus), ± 4 µm or less (with the 50 mm stylus)
	Required force to	XY	0.08 N (STANDARD FORCE), with the 10 mm stylus 0.1 N (MEDIUM FORCE), with the 25 mm stylus
	signal	Z	0.75 N (STANDARD FORCE) 1.9 N (MEDIUM FORCE)
	Amount of over-travel	XY	±14°
		Z	+4.0 mm (STANDARD FORCE) +3.7 mm (MEDIUM FORCE)
	Required force to achieve over-travel	XY	0.2 to 0.3 N (STANDARD FORCE) 0.2 to 0.4 N (MEDIUM FORCE)
		Z	3.5 N (STANDARD FORCE) 7 N (MEDIUM FORCE) 10 N (EXTENDED FORCE)
	Maximum stylus length	1	50 mm (STANDARD FORCE)* 60 mm (MEDIUM FORCE)*
	Stylus mounting method		M2 thread
	Mass of a single probe unit		250 g
	Durability		1,000,000 times
	Probe head		N/A
	Applicable models		Manual/CNC coordinate measuring machines
	Note		Not suitable for use in strong magnetic fields.

* Increase in stylus length or stylus mass may deteriorate the accuracy.

Cat Canfinger

MH20i single unit Code No.	1 2	MH20i	1	0.25	
Code No.	2			0.25	
Code No.		Probe module	1	0.01	STANDARD TYPE
	3	Cleaning tool	1	0.05	For cleaning the stylus module
06ABN436	4	MS2-stylus tool	1	0.003	For attaching/detaching the stylus
	5	Positioning shank	1	0.15	
MH20i set	6 !	Stylus	1	0.001	ø4X10 (standard stylus)
Code No.	7	Allen key (2 mm)	1	0.001	
06ABN470	8	Allen key (3 mm)	1	0.001	
	9	User's Manual	1	0.1	
ote: Some items cannot be ordered separately	V.				

Optional accessories	Stylus modules
Standard force module	
Medium force module	≇ •••••
EM1 (Standard force mo	odule with extension)
EM2 (Standard force mo	odule with extension)

MH20i Touch-trigger Probe with Manual Probe Head

PH10M/PH10MQ Motorized Probe Head

Enhancing measurement efficiency through automatic probe indexing

This probe head can automatically control the position of a probe attached at the end. Automatic position change can be performed by simply specifying the angle through the supplied control box or the dedicated software during teaching and setting it to recall the position from memory.

Moreover, this automatic position change allows for measurement to be completed in much less time than the automatic stylus change method, reducing the total number of man-hours required to perform measurement with the coordinate measuring machine.

High-accuracy indexing to 720 positions

Since the PH10M/PH10MQ can set the attached probe to a maximum of 720 different positions, even one stylus can function as if 720 styli are attached. In addition, since this probe head has a repeatability to the same position as high as $2\sigma \le 0.4 \mu m$, it does not require re-calibration for measurement in which the same position must be repeatedly called.

Possible to mount various kinds of probe

This head can mount various probes including, but not limited to, a touch-trigger probe, scanning probe, vision probe, laser probe, and thread depth measuring probe. Furthermore, these probes can be easily interchanged by means of the probe changer (optional), which enables fully automatic measurement on a wide range of measurement objects. * Note that some probes are not compatible with this automatic probe change.

PH10M/PH10MQ Specifications							
PH10M/PH10MQ	Position change	Horizontal direction	±180° (at 7.5° increments, 48 positions)				
		Vertical direction	0 to 105° (at 7.5° increments, 15 positions)				
	Repeated positioning accuracy	acy $2 \sigma \le 0.4 \mu m$ (when the PAA1+TP20+L10 mm stylus is used.)					
	Extension	PEM1, PEM2, PEM3, PAA1, PAA2, PAA3					
		More than one extension cannot be joined for use. However, combined use of PAA+PECF1, PAA1+PECF2, and					
		PAA1+PECF3 are permitted.					
		Use on an extension is not permitted for the SurfaceMeasure/QVP.					
	Applicable models	CNC coordinate measuring machines					
	Durability	1,000,000 times					

Set configuration

No.	le l	Description	Qty	Remarks
		PH10M head		
		Joint key S10]	
1	PH10M head set	Allen key (nominal 1.5)	1	
	fiedd Set	Allen key (nominal 2)		
		Allen key (nominal 2.5)]	
		PH10MQ head	1	
2	PH10MQ	Joint key S10	1	
2	head set	Allen key (nominal 1.5)	2	
		Allen key (nominal 2.5)	1	
3	HCU-1		1	Controller for positioning the prol
4	PHC10-2 (RS232C)		1	Interface with the machine-side C
5	PAA1		1	Adapter for mounting the TP200
6	User's Manual		1	User's Manual for PH10M head

Note: Some items cannot be ordered separately

PH10M/PH10MQ Motorized Probe Head

	Remarks
	For TP200/TP20
6	For TP200/TP20
	For SP25M/TP7M
	For SP25M/TP7M
	For TP7M

PH1 Manual Probe Head

PH1 Manual Probe Head

Manual probe head

Manual probe head for use with the TP200 and TP20.

Easy position change The operator can change the probe orientation by hand.

Extension It is possible to insert a probe extension that is a maximum of 200 mm long.

PH1 Specifications						
PH1	Position change	Horizontal direction	360° (at 15° increments) Possible in a non-stop manner, if the head is rotated along with the ø14 mm shank unit.			
		Vertical direction	±115° (non-step)			
	Mountable probe	TP200, TP20				
	Extension	PECF1, PECF2, PECF3				
	Applicable models	Manual/CNC coordinate measuring	machines			

REVO-2 Specifications						
REVO-2	Rotation angle	Vertical (A-axis)	-5°			
	(Pitch angle)	Horizontal (B-axis)	∞ (0			
	Maximum stylus length		500			
	() I) I					

* An increase in the length and mass of a stylus may reduce the accuracy.

PH20 5-axis Control Touch-trigger Probe System

hole measurement. data

PH20 Specificati	ons		
PH20	Rotation angle (Pitch angle)	Vertical (A-axis) Horizontal (B-axis)	-115 ∞ (0.
	Maximum stylus length		50 mr

* An increase in the length and mass of a stylus may deteriorate the accuracy.

Effective measurement of a complex workpiece using stylus movement

The PH20 head can position a touch-trigger probe at any angle, allowing unique "head touch" probing. This system has the advantage of measuring tilted surfaces and small, deep holes. There is no fear of interference from the stylus shank during measurement of a deep

5-axis operation reduces the time required for probe rotational movements and supports 'head touch' operation for quick point

The system also supports the module changer using TP20 standard modules.

By combining optional software, a measurement program can be created on a PC using 3D CAD

~+115° (0.08 sec) 08 sec)

Releasin the lock

ACR3 Automatic Probe Changer

The ACR3 is an automatic probe changer for use with the PH10M/PH10MQ. It is essential for fully automatic measurements where the currently employed probe does not have the capability of automatic stylus change but the stylus diameter or length must be occasionally changed, and where the contact-type probe and non-contact type probe are switched as required.

Set configuration

Unit	Ref. No.	Description	Qty	Remarks
	1	ACR3	1	4-port rack
	2	MRS KIT2	1	Rack base
ACR3 4-port	3	Auxiliary plate	1	For fixture
system	4	ACR3 attachment	1	Attachment
	5	User's Manual	1	
	6	Control ROM	1	Adaptive to ACR3
	1	ACR3	2	4-port rack
	2	MRS KIT2	1	Rack base
ACR3 8-port	3	Auxiliary plate	1	For fixture
system	4	ACR3 attachment	1	Attachment
	5	User's Manual	1	
	6	Control ROM	1	Adaptive to ACR3

Rotary Tables for CNC CMM

Specificat	tions				
Model		MRT240	MRT320	Q\$600	Q\$800
Dimensions [mm]	Depth	327	470	1000	1200
	Width	250	400	720	920
	Height	105	150	1	60
Table diameter [mm]		240	320	600	800
Mass [kg]		20	120	370	530
Max. load [kg]		40	100	1700	3000
Accuracy	Indexing accuracy [°]	±0.00019	±0.00019	0.0	006
Max. drive speed[rpm]	6	9	5	4

Customized special applications

Embedded in measuring table

32

These optional rotary tables allow highly-accurate and efficient measurements of workpieces like rotationally symmetrical parts (gears, impellers and cylindrical cams). When used with a scanning probe, synchronized scanning measurements can be performed, enabling various contour measurements and advanced measurements.

Compact and light weight but capable of supporting a workpiece of up to 40 kg. Can also be used with shop-floor type CNC coordinate measuring machine, MiSTAR555.

A ø60 mm through hole on the center of the table allows measurements of long axial workpieces like long drive shafts.

Suitable for measurements of large workpieces.

Air suspension

Quick guide to styli 🖉

The choice of stylus has an important effect on the accuracy of measurement obtainable from a CMM. Here is a quick guide on how to select a stylus.

The stylus is the part of a probe that makes contact with a workpiece, generally consisting of a stem and a ball tip. The probe functions by bringing the ball into contact with a workpiece to acquire a measurement from the resulting signal. The form and dimensions of a stylus need to be selected depending on the workpiece. In any case, it is important that a stylus has high rigidity and its tip shape is a practically perfect sphere.

Selection of a stylus

It is recommended that a stylus be selected on the basis of the following factors to ensure the high accuracy of measurement.

1. Choose the shortest stylus possible.

The longer a stylus, the more it will flex, and lower accuracy will result. We recommend using the shortest possible stylus for measurement, regardless of the configuration of the stylus.

2. Reduce the number of joints wherever possible.

The combination of styli and use of extensions will increase the possibility flexure. We recommend using as few parts as possible to make up the stylus.

3. Use a ball tip as large as possible.

The use of a larger ball increases the clearance between the ball and stem, thus reducing the possibility of contact between the stem and workpiece (shanking). A larger ball also reduces the influence of the surface finish of a workpiece on measurement accuracy.

Material

A stylus uses an appropriate material for its shaft, ball and other accessories according to the application. The following introduces the features and merits of commonly used materials.

1. Stem

To minimize flexure, the stem needs to be as stiff as possible. Mitutoyo offers the following materials:

Tungsten carbide

This material provides excellent rigidity for small stem diameters, thus being optimal for most standard applications. Consideration should be given to the stylus mass in the case of large stem diameter and long stylus length.

Stainless steel

Non-magnetic stainless steel stems offer the best stiffness to mass ratio.

Ceramic

Because it is light and has the same level of rigidity as stainless steel, ceramic is mainly used with a stylus with a large ball size and a long axis. It has excellent thermal stability and is not affected by the temperature environment, thereby allowing higher accuracy measurement.

2. Ball Tip

Selection of the most suitable ball tip material involves taking the measuring procedure and workpiece material into account.

A ruby ball provides a particularly hard, smooth surface, featuring high compressive strength and excellent mechanical wiping. Ruby is appropriate as a ball material for scanning diverse workpieces, but may cause abrasion during the scanning measurement of aluminum and cast iron. When measuring aluminum and cast iron, it is advisable to use other ball materials as listed below.

Silicone nitride

Silicon nitride, which is similar to ruby, is a ceramic material that provides high hardness and strong resistance to abrasion. Since silicon nitride will not fuse with aluminum, it will not cause adhesive wear like ruby. Since silicon nitride will not fuse with aluminum, it will not cause adhesive wear like ruby. However, it is recommended that a silicon nitride ball be used only for aluminum workpieces due to a marked susceptibility to abrasion on steel surfaces.

Zirconia

Zirconia is a ceramic material that demonstrates a particularly outstanding hardness and has hardness and abrasion characteristics equivalent to a ruby. It is ideal for scanning cast iron parts.

Calibration

Even if a stylus appropriate for a workpiece is selected, an accurate measurement result will not be obtained unless the probe to be used is calibrated prior to measurement, which involves probing a master reference sphere in a defined sequence so that the CMM software can establish the ball tip and probe/stylus characteristics.

Calibration mechanism

The CMM calculates the center position and diameter of each stylus ball using the specific probe calibration program. This program uses CMM measurements made of the reference sphere with each configured stylus ball to determine the true diameters of the balls and stores the measured data in the software. The precise diameter of the reference sphere is known from a previous calibration measurement and is also stored for use in the calculations. As a workpiece may be measured from every direction, a stylus is calibrated with measurements at multiple points on the reference sphere. A scanning system needs to obtain a large number of points for calibration. With these procedures observed, the effective diameter for each stylus ball and the center positions of the stylus balls in the machine coordinate system are set to enable accurate measurement.

Notes on using styli

- Inaccuracies can occur depending on the stylus length and mass and the drive speed and acceleration of the probe. Due consideration should be given to the type of probe when setting measuring speed for long and/or heavy styli for scanning measurements.
- A disk stylus consists of the center section of a sphere and is used to measure edges and undercuts on a workpiece. This type of stylus is actually used only for X- and Y-direction measurement due to its shape. It cannot be used for Z-direction measurement. Also, this stylus must be used in conjunction with a stylus changer.
- There are restrictions on the use of a cylinder stylus, again because of its shape.
- For details about restrictions, contact a Mitutoyo sales office.
- Styli are classified in M2 to M5 series, which refers to the fixing thread size of a probe. The use of a conversion adapter, etc. may allow a stylus with a different thread size to be mounted. In this case, refer to the instruction manual of the probe on which to mount the stylus to select the stylus configuration compatible with the probe specification. Contact your local Mitutoyo sales office if you have any questions about the mounting method.

Carbon fiber is a material appropriate for long styli since the mass of a carbon fiber stylus is approximately 20% of that of a carbide stylus. Thanks to excellent thermal stability, a carbon fiber stylus is little affected by the operating environment.

Product Identification on Styli for Coordinate Measuring Machines

From each Mitutoyo styli the approximate form can be identified (see below).

①Point stylus MS2-PO ("-H" will be added when the probe tip is carbide.) ②Extension MS2-EXT10 (the figure at the end represents the length. "G" is appended if the bar is carbon fiber, and "C" is appended if the bar is ceramic.) ③Stylus knuckle MS2-stylus knuckle (an adapter for turning the stylus to the optional angle.) ④Stylus center MS-stylus center (an adapter to allow the styli to be mounted so they can be oriented in directions crossing each other.)

Stylus (Mounting Thread M2)

Note: For a stylus longer than 30 mm, select a product with its axis made from carbon fiber or ceramic.

Note: For a stylus longer than 30 mm, select a product with its axis made from carbon fiber or ceramic.

Code No.	06ABF402		M2X0.4	ا <u>ت</u>
Description	MS2-3R64			ø
Description	11152 5110 1			∍_
			t	- 64
			-	68
C I N				
Code No.	06ABF405	<u>M2X0</u>	.4	
Description	MS2-3R68.5C	g l		
		Ţ		6
				83.5
Code No.	06ABN774	06AFG352	06AFG413	
Description	MS2-4R10	MS2-4SN10	MS2-4Z10	
Material of	Puby	Silicon	Zirconia	<u>~</u> −
probe tip	Ruby	nitride	LIICOIIId	M2X0.4
Code No.	06AFZ463			L.
Description	MS2-4R12 15	-		m eta
Description	10152-41(12.15			8 0 0
				M2×0.4/ 1
				I _ _
Code No	06ABN775	06AFG353	06AFG414	
Description	MS2_4R20	MS2-45N20	MS2-4720	- I
Material of	10132-41/20	Silicon	10132-4220	- 0 0
probe tip	Ruby	nitride	Zirconia	M2X0.4
				J
Code Na		06456254	06456445	1
Coue NO.	UDABIN//6	UDAFG354	00AFG415	اي _
Description	MSZ-4K30	MS2-45N30	MS2-4230	
iviaterial of	Ruby	Silicon	Zirconia	
probe tip	-	Innue		M2X0.4 /
<u>c </u>	00000000	0.0450005	0.000	1
Code No.	06ABN777	06AFG355	06AFG416	<u>د</u> ا
Description	MS2-4R40	MS2-4SN40	MS2-4Z40	₩ ··· @@ ···]
Material of	Ruby	Silicon	Zirconia	
probe tip		nitride		<u>MZX0.4</u> /
Code No.	06ABN778	06AFG356	06AFG417	
Description	MS2-4R50	MS2-4SN50	MS2-4Z50	 ₩
Material of	Ruby	Silicon	Zirconia	
probe tip	1.000	nitride	2.1.00.110	<u>M2X0.4</u> /
Code No.	06ABN779	06AFG357	06AFG418	, s
Description	MS2-4R50C	MS2-4SN50C	MS2-4Z50C	₩ <u></u>
Material of	Puby	Silicon	Zircopia	M2X04
probe tip	Ruby	nitride	ZIICOIIId	
Code No.	06ABO341	06AFG358	06AFG419	
Description	MS2-4R50 5G	MS2-45N50 5G	MS2-4750 5G	M2X0.4
Material of		Silicon		
probe tip	Ruby	nitride	Zirconia	
Code No	064BE404	1		
Description	MC2 ADCO	1	M2X0.4	87
Description	11/12-41/08	1		
				L
				00
C 11	0000000000	 1		
Code No.	06ABF410		M2X0.4	Ceramic
Description	MS2-4R98C	s to	·	/
		T_		98
Code No.	06ABN780	06AFG359	06AFG420	
	00, 10, 10, 00			
Description	MS2-5R10	MS2-5SN10	MS2-5Z10	
Description Material of	MS2-5R10	MS2-5SN10 Silicon	MS2-5Z10	
Description Material of probe tip	MS2-5R10 Ruby	MS2-55N10 Silicon nitride	MS2-5Z10 Zirconia	<u>∞</u> - •

Note: For a stylus longer than 30 mm, select a product with its axis made from carbon fiber or ceramic.

Note: For a stylus longer than 30 mm, select a product with its axis made from carbon fiber or ceramic.

Stylus (Mounting thread M2)

Mitutoyo

* For a stylus longer than 30 mm, select a product with its axis made from carbon fiber or ceramic.

steel	
0.4 Mass: 0.2 g	
<u>eel</u>	
2 <u>X0.4</u> Mass: 0.4 g	
ieel	
<u>M2X0.4</u> Mass: 0.9 g	
<u>M2×0.4</u> Mass: 0.7 g	
eel M2X0.4 Mass: 1.4 g	
<u>M2X0.4</u> Mass: 1.8 g	
M2×0.4 Mass: 1.0 g	
<u>1.55</u> <u>M2×0.4</u> Mass: 0.9 g	For TP200 For mounting stylus, attachment tools for carbon extension is required. (refer to page 62)
M2×0.4 Mass: 1.0 g	For TP200 For mounting stylus, attachment tools for carbon extension is required. (refer to page 62)

06ABN816 06AFG369 06AFG430 Code No. MS3-0.5R2 MS3-0.5SN2 MS3-0.5Z2 Description M3X0.5 Material of Silicon Ruby Zirconia probe tip nitride Code No. 06ABN817 06AFG370 06AFG431 MS3-1R4 MS3-1SN4 MS3-1Z4 Description M3X0.5 Material of Silicon Ruby Zirconia probe tip nitride Code No. 06ABF414 M3X0.5 Description MS3-1R12 Code No. 06ABF412 M3X0.5 Description MS3-1R25

Stylus (Mounting thread dia.: M3)

Code No.		06ABN818	06AFG371	06AFG432
Descriptio	n	MS3-1.5R12.5	MS3-1.5SN12.5	MS3-1.5Z12.5
Material of probe tip	of	Ruby	Silicon nitride	Zirconia

Code No.	06ABN820	06AFG373	06AFG434
Description	MS3-2R9.6	MS3-2SN9.6	MS3-2Z9.6
Material of probe tip	Ruby	Silicon nitride	Zirconia

				_
Code No.	06ABN830	06AFG383	06AFG444	<u>M3X0.5</u>
Description	MS3-4R46	MS3-4SN46	MS3-4Z46	
Material of	Ruby	Silicon	Zirconia	
probe tip	Ruby	nitride	ZIICOIIId] ` [
				1-
Code No.	06ABF403			M3X0.5
Description	MS3-4R53			
				' - ' -
				1
Code No.	06ABN831	06AFG384	06AFG445	NOVO E Chi
Description	MS3-5R21	MS3-55N21	MS3-5Z21	M3X0.5 Stall
Material of	Ruby	Silicon	Zirconia	2 1
probe tip	Ruby	nitride	Zircorna	
Code No.	163874	06AFG385	06AFG446	MOVO E Sta
Description	MS3-5R31	MS3-5SN31	MS3-5Z31	
Material of	Ruhy	Silicon	Zirconia	2 + + +
probe tip	Ruby	nitride	Lincollid	
Code No.	06ABN832	06AFG386	06AFG447	M3X0 5
Description	MS3-5R50C	MS3-5SN50C	MS3-5Z50C	
Material of	Ruby	Silicon	Zirconia	8 0.0
probe tip	liaby	nitride	Lincorniu	'
Code No.	06ABS911	06AFG387	06AFG448	M3X0.5
Description	MS3-6R75G	MS3-6SN75G	MS3-6Z75G	
Material of	Ruby	Silicon	Zirconia	2 +
probe tip	киру	nitride	ZIICOIIId	
Code No.	06ABS912	06AFG388	06AFG449	
Description	MS3-6R100G	MS3-6SN100G	MS3-6Z1000G	
Material of	Ruhy	Silicon	Zirconia	
probe tip	Ruby	nitride	Lincollid]
		M3X0.5		Carbon fil
	2	t ∎-∰-∳		/
		-		100
e				1
Code No.	06ABS913	06AFG389	06AFG450	<u>M3X0.5</u>
Description Material of	MS3-8K/5G	MS3-8SN/5G	MS3-8275G	₹
probe tip	Ruby	nitride	Zirconia	
here ob		manae		-
C I N	00400044	00000	000000]
Code No.	U6AB5914	UDAFG390	U6AFG451	
Material of	M22-9K100G	MIS3-85N100G	1VIS3-82100G	
probe tip	Ruby	nitride	Zirconia	
	1			1
		M3X0.5		Carbon fib
	ĩ	₫ 🕂 🕂 – –		
		-		100
Codo No	004007	Description	MC2 00120C	7
Code No.	06ABF407	Description	1VIS3-8K13UC	
_	M3X0.5	24		Ceramic
8	¢			/
		1		130
F				
Code No	916492			
Description	MS2-20C			<u>M3X0</u>
Description	10133-300			1
				Ceramic \bot

Mitutoyo

Stylus (Mounting thread M5)

Attachment Tools

Stylus Set [Code No. 06ABT114]

Ref. No.	Description	Specifications	Qty	Remarks
1	MS4-1R4.5-S	ø1×20 mm (M4)	2	High-accuracy specifications
2	MS4-2R8-S	ø2×20 mm (M4)	2	High-accuracy specifications
3	MS4-4R13.5-S	ø4×20 mm (M4)	2	High-accuracy specifications
4	MS4-4R33-S	ø4×50 mm (M4)	1	High-accuracy specifications
5	MS4-8R50C-S	Sø8×50 mm (M4)	1	High-accuracy specifications
6	MS4-8R100C-S	Sø8×100 mm (M4)	1	High-accuracy specifications
7	MS3-30C	Sø30 Ceramic ball (M3)	1	
8	MS4-EXT50C	L50 Extension (M4-M4)	2	
9	MS4-EXT30C	L30 Extension (M4-M4)	1	
10	MS4-M3EXT20	L20 Extension (M4-M4)	1	
11	MS4-M3EXT75C	L75 Extension (M4-M3)	1	
12	MS4-stylus center	M4 Stylus center	1	
13	MS3-stylus center	M3 Stylus center	1	
14	MS2-stylus center	M2 Stylus center	1	
15	MS4-stylus tool	M4 Stylus tool	2	
16	MS2-stylus tool	M2, M3 Stylus tool	2	
17	MS4-M3 female-adapter	M4-M3 adapter (L9)	2	
18	MS3-M2 female-adapter	M3-M2 adapter (L5)	5	
19	Storage box		1	

Note: Some items cannot be ordered separately.

• For other necessary styli, please select from the styli list at the end of this document.

• For probe extensions, refer to PH10M/PH10MQ (pages 30-31).

	 Attachment tool for probes with the body diameter of ø13 mm and probe extensions.
Mass: 5.0 g	
a13	 Attachment tool for probes with the body diameter of ø13 mm or 18 mm and probe extensions.
Mass: 5.0 g	
	• Stylus attachment/detachment tool for M2 and M3 mounting screws.
2.1 2.1	
Mass: 0.7 g	
<u>82</u>	Stylus attachment/detachment tool for M4 mounting screws.
Mass: 3.5 g	
)	Attachment/detachment tool for carbon-fiber extensions whose mounting thread is M2.
Mass: 20.0 g	

Stylus Set

Set No. 06AGG825*

Mitutoyo			0
	+1		
11.11	•	1 T	
1110	11		

Set No. 06AGG826*

International International	In the second second	State of the state	
Contraction of the second			
Contraction of the second			
			and the second of the second second
PROFESSION AND ADDRESS OF	UNIVERSITY OF ANTINATION		
-	1	-	
0 0	1	-	9
	11	1	11
	11	11	
			111
			0000
1111]			

Description	ø (mm)	L (mm)	Qty
Stylus steel-ruby M2	4	20	1
Stylus steel-ruby M2	3	20	1
Stylus steel-ruby M2	2	20	5
Stylus steel-ruby M2	1	10	1
Extension steel M2	-	30	1
Extension steel M2	-	20	1
Extension steel M2	-	10	4
5-way stylus holder M2	-	8	1
Pin spanner	1.2	23	2

ø (mm)

4

3

2

1

_

_

_

1.2

_

L (mm)

50

40

30

27.5

30

17.2

8

23

_

Otv

5

1

2

1

1

1

1

2

1

* Only available as a set.

Descr

Stylus CF-ruby M2

Stylus tungsten M3

Stylus tungsten M2

Stylus tungsten M2

Long adapt M3/M2 CF

Knuckle Joint steel M2

5-way stylus holder M2

Pin spanner

Hexagon wrench

* Only available as a set.

Set No. 06AGG827*

Description	ø (mm)	L (mm)	Qty
Stylus tungsten M2	0.5	10	1
Stylus tungsten M2	0.7	10	1
Stylus steel-ruby M2	1	10	1
Stylus steel-ruby M2	1	20	1
Stylus steel-ruby M2	2	20	4
Adaptor M3/M2	_	5	1
5-way stylus holder M2	—	8	1
Extension steel M2	_	20	1
Pin spanner	1.2	23	2

* Only available as a set.

Stylus Cleaner

Preventing inaccurate measurements caused by an unclean stylus

The stylus cleaner removes dust and debris adhering to the stylus of a CNC coordinate measuring machine.

It removes dirt from the stylus in only about 30 seconds, due to the combination of cleaning fluid and compressed air.

Stylus cleaner:

- Eliminates the hassle of manual stylus cleaning.
- Avoids the risk of inaccurate measurements caused by an unclean stylus.
- Allows accurate calibration by conducting stylus cleaning before calibration.

A stylus cleaner improves the efficiency and reliability of your quality assurance!

Unclean stylus

The probe moves to the sensor of the stylus cleaner.

(4)

Stylus after cleaning

Cleaning complete

Applicable with down-facing styli Applicable stylus length: 20 mm or more Applicable stylus diameter: 8 mm or less

By registering the cleaner position in advance, these operations can be performed as CNC part programs. Automatic cleaning operation can be added after probe replacement or during workpiece measurement. (The CNC part program for stylus cleaning is provided by Mitutoyo.)

The probe moves to above the cleaner.

The probe moves the cleaning unit up and down several times to clean the stylus with cleaning fluid and compressed air.

20 seconds Time (number of times) can be set arbitrarily.

Ceramic Master Ball

• Ball sphericity: 0.13 µm or less • Ball diameter dimensional tolerance: Sø20⁰.1 mm ø7 drill through Sø20 ceramic ball Unit: mm [Material: AI2O3 (99.9%)] M8X1.25 Mitutovo ø23 8.4 141 163 Ceramic master ball (high-accuracy type) Ball sphericity: 0.08 µm or less Ball diameter dimensional tolerance: Sø10±005 mm ø7 drill through Unit: mm Blue Line M8X1.25

Base appearance

Ceramic ball attachment figure

Set break-downs

Set code No.	Ball diameter (mm)	Туре	Master ball cover	Base	Inspection certificate	Calibration certificate	Traceability system diagram	Calibration certificate (JCSS
06AFK288A	20	Standard	\checkmark	-	\checkmark	-	-	-
06AFK288B	20	Standard	\checkmark	-	\checkmark	\checkmark	✓	-
06AFK288D	20	Standard	✓	-	-	-	-	✓
06AFK289A	20	Standard	\checkmark	\checkmark	\checkmark	-	-	-
06AFK289B	20	Standard	\checkmark	\checkmark	\checkmark	\checkmark	✓	-
06AFK289D	20	Standard	\checkmark	\checkmark	-	-	-	✓
06AFK290A	20	High-accuracy	\checkmark	-	\checkmark	-	-	-
06AFK290B	20	High-accuracy	✓	-	\checkmark	\checkmark	✓	-
06AFK290D	20	High-accuracy	\checkmark	-	-	-	-	✓
06AFK291A	20	High-accuracy	\checkmark	\checkmark	\checkmark	-	-	-
06AFK291B	20	High-accuracy	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
06AFK291D	20	High-accuracy	\checkmark	\checkmark	-	-	-	\checkmark
06AFK292A	10	High-accuracy	\checkmark	-	\checkmark	-	-	-
06AFK292B	10	High-accuracy	\checkmark	-	\checkmark	\checkmark	✓	-
06AFK292D	10	High-accuracy	\checkmark	-	-	-	-	1

Optional accessory for the Ceramic Master Ball

Spacer

Spacer appearance

• Ball sphericity: 0.08 µm or less

• Ball diameter dimensional tolerance: Sø20⁰_{-0.1} mm

Master ball cover (Part No. 06AFJ091) Cover for a ceramic master ball

Joystick Box

The joystick box allows users to easily operate their CMM from a remote location when creating a part program in teaching mode or operating the machine manually. Three types are available to suit your purpose.

Safety Laser Scanner

automatically.

Installation of safety laser scanners Two safety laser scanners are attached to both sides of front of MACH-3A.

Attaching Spacer to Ceramic Master Ball + Base

The safety of CNC CMM can be enhanced by attaching the device to the machine. When a person enters the set hazardous area, the machine will reduce speed and stop

Operation of safety laser scanners

	Hazardous area	Speed
С	forbidden area	stop
В	warned area	low speed
Α	outside the hazardous area	fast movement speed

Whatever your challenges are, Mitutoyo supports you from start to finish.

Mitutoyo is not only a manufacturer of top quality measuring products but one that also offers qualified support for the lifetime of the equipment, backed up by comprehensive services that ensure your staff can make the very best use of the investment.

Apart from the basics of calibration and repair, Mitutoyo offers product and metrology training, as well as IT support for the sophisticated software used in modern measuring technology. We can also design, build, test and deliver measuring solutions and even, if deemed cost-effective, take your critical measurement challenges in-house on a sub-contract basis.

Find additional product literature and our product catalogue

https://www.mitutoyo.co.jp/global.html

Our products are classified as regulated items under Japanese Foreign Exchange and Foreign Trade Law. Please consult us in advance if you wish to export our products to any other country. If the purchased product is exported, even though it is not a regulated item (Catch-All controls item), the customer service available for that product may be affected. If you have any questions, please consult your local Mitutoyo sales office.

Note: Product illustrations are without obligation. Product descriptions, in particular any and all technical specifications, are only binding when explicitly agreed upon.

MITUTOYO and MiCAT are either registered trademarks or trademarks of Mitutoyo Corp. in Japan and/or other countries/regions. Other product, company and brand names mentioned herein are for identification purposes only and may be the trademarks of their respective holders.

All product information contained in this brochure is current as of August 2023.

Mitutoyo Corporation

20-1, Sakado 1-Chome, Takatsu-ku, Kawasaki-shi, Kanagawa 213-8533, Japan T +81 (0) 44 813-8230 F +81 (0) 44 813-8231 https://www.mitutoyo.co.jp